

High-Performance Packaged Boiler

Australia's largest certified package boiler company.

www.environmental.com.au

The Environmental Group Limited

Working across the Circular **Economy**

Our Purpose

Engineering a sustainable future.

Our Mission

To enable our clients to contribute to a cleaner environment by safely delivering pivotal solutions while generating value for our shareholders, staff, and partner industries.

Our Team

Our local experts are dedicated to reducing waste and boosting energy performance. Trusted worldwide to provide the highest standards of service and support.

Tomlinson Enegery Services

Part of The Environmental Group

Tomlinson Energy Services is Australia's leading provider of packaged boiler solutions, delivering the highest combustion efficiency to keep operating costs low and performance high.

We specialise in custom design, installation, commissioning, and national servicing and repairs, complemented by our 24/7 emergency support.

With offices and a dedicated service team across Australia. Tomlinson Energy Services ensures boilers operate at peak performance for maximum efficiency and reliability.

The Enviornmental Group Limited

MONOBLOC **INDUSTRIAL BURNERS** 1200-17 000 KW

Offering Industry Leading Burners

Weishaupt produces gas and oil-fired boilers, heat pumps, and burners. These top-quality products are characterised by their meticulous development, high-quality workmanship, outstanding operational reliability, and maximum Efficiency. Their unrivalled excellence extends equally to design and function.

www.environmental.com.au

2

-weishaupt-

For more than six decades, Weishaupt burners have proven themselves on a wide variety of heat generators and process plant. Their success stems from a relentless demand for highquality materials and workmanship, and uncompromising quality control standards.

Weishaupt continually establishes new benchmarks with its wellengineered products, facilitated by the ever-constant efforts of its own Research and Development Centre.

Such efforts produced the WKmono 80, which shares its platform with the duobloc WK 80. The large 1200 to 17 000 kW range of the WKmono 80, which is available in NR and multiflam[®] versions and is suitable for natural gas, LPG, and gas oil, is particularly impressive.

All Weishaupt burners are manufactured at the company's main plant in Schwendi in southwestern Germany. Modern production facilities enable a rapid response to individual requirements, while experienced employees and a high proportion of in-house production ensure high levels of quality.

Of course, Weishaupt's product range also runs the gamut of modern instrumentation and control equipment, including fully comprehensive solutions for complex building automation projects.

Future-oriented, economical, flexible.

-weishaupt-

+61 (0)3 9541 8699

Compact and powerful

WKmono burners are a synergy of monobloc and duobloc burner design. They utilise various components and housing elements from the modular system of the existing duobloc WKseries burners while retaining a compact and service-friendly design.

A rail system, for example, makes it easy for the technician to withdraw and insert the mixing assembly of the 80/2-size burner during servicing. Tried-and-tested safety shutoff devices, oil regulators, pump stations, and other components from the WK burner range provide a high degree of safety and reliability.

Flexibility

The standard air inlet draws air from below, but is also optionally available in a rotated position for sites with limited floor clearance. Furthermore, the burner can be constructed with the positions of its motor and air inlet interchanged when necessary to suit the design of the heat generator.

Digital reliability

These two words describe combustion managers in a nut-shell. Their adaptability and versatility leave nothing to be desired. VSD, CO monitoring, O₂ trim, and combined CO control with O_2 trim are tried-and-tested options. There is also a data interface for communication with superordinate control systems.

No one fuel is the same as the next

Various different mixing assemblies have been specially developed for use with particular fuels. Reliable combustion with a wide range of gases and oils is thereby guaranteed.

This next generation of monobloc burner shares in Weishaupt's guiding principles of cost-effectiveness, efficiency, and reliability.

Simplified installation and servicing

Rail system for the mixing assembly

Mixing assembly in the servicing position

into

To keep maintenance from having to be a feat of strength, the WKmono80/2 has an integrated rail system that makes it very much easier to insert and remove the mixing assembly. In addition, the mixing assembly can be tipped into a servicing position, which considerably improves access to the wear-and-tear parts.

ACS 450 commissioning software

-weishaupt-

Readily accessible oil-side components

Control and display unit with error display

Data backup to the control and display unit

An error message display puts fault finding quickly onto the right path so the burner can be returned to operation without delay. Internal data backup to the control and display unit, or external backup via the commissioning software, is an ideal precaution.

Use

Fuels

Natural gas

LPG Class D gas oil per BS 2869/IS 251 Class A2 gas oil per BS 2869 / IS 251 10 % biodiesel blends (B10)

The suitability of fuels of differing quality must be confirmed in advance with Weishaupt.

Applications

Weishaupt WKmono80 burners are suitable for intermittent and continuous firing on:

- EN 303-compliant heat generators
- LTHW boilers
- HTHW boilers
- Steam boilers
- Air heaters

8

 Thermal fluid heaters Certain process applications

Permissible ambient conditions

- Ambient temperature -15 to + 40 °C for gas firing
- -10 to + 40 °C for oil firing
- Maximum 80 % relative humidity, no condensation
- The combustion air must be free of aggressive substances (halogens, chlorides, fluorides etc.) and impurities (dust, debris, vapours, etc.)
- Adequate ventilation is required for operation in enclosed spaces • For plant in unheated areas, certain
- further measures may be required

Use of the burner for other applications or in ambient conditions not detailed above is not permitted without the prior written agreement of Max Weishaupt GmbH. Burner service intervals will be reduced to accord with the more extreme operational conditions.

Protection Class

IP 54

Standards compliance

The burners are tested by an independent body and fulfil the applicable requirements of the following European Union directives and applied standards:

EMC EMC Directive

- 2014/30/EU
- Applied standards
- EN 61000-6-1 : 2007
- EN 61000-6-2 : 2005 • EN 61000-6-4 : 2007
- LVD Low-Voltage Directive 2014/35/EU Applied standards
 - EN 60335-1 : 2010
 - EN 60335-2-102 : 2010
- Machinery Directive MD 2006/42/EC
 - Applied standards EN 267 Annex J
- EN 676 Annex J GAR Gas Appliances Regulation 2016/426/EU Applied standards
- EN 676 : 2008 **PED**¹⁾ Pressure Equipment Directive 2014/68/EU
 - Applied standards
 - EN 267 Annex K
 - EN 676 Annex K
 - Conformity assessment procedure: Module B

¹⁾ With the selection of appropriate equipment.

The burners are labelled with

- CE Mark
- CE-PIN per 2009/142/EC
- Identification No. of the notified body

Gas supply

EN 88-compliant regulators with safety diaphragms are used for low-pressure supplies.

For high-pressure supplies, an EN 334compliant high-pressure regulator should be selected from the following technical booklets:

- Regulators up to 4 bar. Print No. 83001202
- · Regulators with safety devices, Print No. 83197902

Refer to the burner's rating plate for the maximum connection pressure.

Gas valve train design

Low-pressure valve trains are normally used for gas flow pressures up to a maximum of 300 mbar and a maximum operating pressure (MOP) of 500 mbar. This allows for pressure losses between the transfer station and the valve train. Furthermore, it is assumed that the transfer station utilises components (SSV, regulator) that are not of the highest class of accuracy. In individual cases, following consideration and approval by Weishaupt's headquarters, a gas flow pressure of up to 360 mbar can be approved if the appropriate conditions exist. The supplier must safeguard the gas flow pressure such that it cannot exceed the MOP of the burner's gas valve train.

DMV5100/12 VGD40.150

High-pressure valve trains are normally used for gas flow pressures greater than 300 mbar. The supplier must safeguard the gas flow pressure such that, in the event of failure, it cannot exceed the maximum incidental pressure (MIP*) of the burner's gas valve train.

 $*MIP = MOP \times 1.1$

-weishaupt-

Gas/dual-fuel burner capacity graphs The capacities as a function of combustion

chamber pressure are maximum values measured in accordance with EN 676 on

idealised flame tubes.

account.

Flanged

DN 65

DN 80

DN 100

DN 125

DN 150

The burner capacity graphs are certified in accordance with EN 676. The stated ratings are based on an air temperature of 20 °C and an installation at sea level. For installations at higher altitudes, a reduction in capacity of 1 % per 100 m above sea level should be taken into

The combustion chamber pressure of the heat generator must be added to the flow pressure determined from the chart when sizing the gas valve train. Minimum flow pressure 15 mbar.

The LHV is referenced to 0 °C and 1013 mbar atmospheric pressure. All pressures are in mbar.

The LPG charts are based on propane, but may also be used for butane.

Double gas valve assemblies

DMV5065/12 DMV5080/12

Oil burner capacity graphs

The capacities as a function of combustion chamber pressure are maximum values measured in accordance with EN 267 on idealised flame tubes.

The burner capacity graphs are certified in accordance with EN 267. The stated ratings are based on an air temperature of 20 °C and an installation altitude of 500 m above sea level. For installations at higher altitudes, a reduction in capacity of 1 % per 100 m above sea level should be taken into account.

Stated oil throughputs are for gas oil with a LHV of 11.9 kWh/kg.

DIN CERTCO certification

The burners have been type-tested by an independent body (TÜV-Süd) and certified by DIN CERTCO.

Digital combustion management: Precise, simple, and reliable

Setting via the ABE control and display unit

Digital combustion management means optimal combustion figures, continuously reproducible setpoints, and ease of use.

All Weishaupt WKmono-series burners are equipped with digital combustion management and electronic compound regulation as standard. Modern combustion technologies demand the precise and continually reproducible dosing of fuel and combustion air. This optimises combustion efficiency and saves fuel.

Simple operation

Setting and control of the burner is achieved using a control and display unit. This is linked to the combustion manager via a bus system, enabling the userfriendly setting of the burner. The control and display unit has a clear text display with a choice of languages. An English/Chinese dual-screen version is available as an option should a Chinesecharacter display be desired.

Measures for saving energy and increasing safety and reliability

Variable speed drive provides multiple benefits. It facilitates a soft start of the burner fan, keeping the start current to a minimum. Fan speed is matched to the combustion air volume during operation, which saves electrical energy and reduces noise emissions. O_2 trim saves fuel through a continual and extremely efficient optimisation of the combustion air. Control is effected by a system with a Lambda probe, which continually measures the oxygen content of the flue gas.

CO monitoring executes a safety shutdown of the burner if a predefined CO limit is exceeded, thereby ensuring the very highest degree of safety. **Combined CO control / O_2 trim** ensures an ultimate degree of safety. CO emissions are continually monitored and, if the defined limit is exceeded, the burner is operated with an increased amount of excess air for a short period of time before the O_2 trim returns the burner to its preset O_2 setpoint. Should external influences prevent a non-critical condition from being reached, then the burner will undergo a controlled shutdown.

Features – digital combustion management	W-FM 100	W-FM 200
Single-fuel operation	•	•
Dual-fuel operation	•	•
Continuous firing >24 h	•	•
Variable speed drive available	-	•
O ₂ trim available	-	•
CO monitoring	-	0
Combined O ₂ trim and CO control	-	0
Temperature-compensated flue gas recirculation	-	0
ION/QRI/QRA 73 flame sensor for continuous firing	•	•
W-FC 4.0 flame monitoring	•	•
W-FC 5.0 flame monitoring	-	•
Maximum number of actuators	4	6
Gas valve proving	•	•
Integrated PID controller with automatic adaption. Pt/Ni temperature sensor, $0/2-10$ V, and $0/4-20$ mA inputs for temperature / pressure	0	•
0/2-10 V and 0/4-20 mA setpoint input for temperature / pressure	0	•
Configurable 0/4-20 mA analogue output	0	•
ABE control unit with 20 available languages (any one ABE limited to 6)	•	•
Dual-language/script ABE control unit (Chinese/English)	0	0
Removable ABE control unit (max. length of connecting bus line)	100 m	100 m
Fuel consumption meter (switchable)	-	•
Combustion efficiency display in conjunction with O ₂ trim	-	•
eBUS/Modbus-RTU interface	•	•
PC-supported commissioning	•	•

Standard
 O Optional

75.0 input G+ mA/V Burner with digital combustion manage Burne Μ moto Speed Л senso Up to six actuators for - Gas feed ğ - Air feed - Oil feed rive - Regulating sleeve (air) conve beed di - FGR air damper FGR butterfly valve Frequency of variable spot e 11

W-FM 200 combustion manager

Schematic representation with W-FM200

-weishaupt-

Flexible communications: Compatible with building management systems

-weishaupt-

control solutions.

Overview of burner regulation Model designation

Gas and oil-fired operation

Weishaupt WKmono burners can have sliding-two-stage or modulating operation when firing gas or oil, depending on the method of load control employed.

Sliding-two-stage regulation (ZM, R)

• Two-term switching (e.g. temperature or pressure stat) causes actuators to drive the burner to partial load or full load in response to heat demand.

Combustion remains CO and smoke-free between load points.

Modulating regulation (ZM, R)

- An electronic load controller causes actuators to make infinitely variable load adjustments in response to heat demand.
- Modulating operation:
- W-FM 100 with an optional integral load controller
- W-FM 200 with its standard integral load controller
- Alternatively, a PID controller can be fitted into the control panel.

Off

F = Full load (nominal load)

On

- P = Partial load (minimum load) Z = Ignition load
- ¹⁾ Alternatively, staged control can also be effected by an electronic PID controller. In this case, appropriate temperature sensors or pressure transducers will be required.

Model designatio	n
------------------	---

Details	Code	Meaning	Associated fuel
Series	WKmono	WK monobloc burner	
Fuel *	G L	Gas Class D/Class A2 gas oil	
Load control *	ZM R	Sliding-two-stage/modulating Sliding-two-stage/modulating	Gas Oil
Version	– NR 3LN 4LN	Standard NO _x -reduced gas firing multiflam [®] Ultra-low NO _x with FGR	Oil Gas∕oil Gas∕oil Gas
Suffix	r	Motor on right-hand side	

Turndown ranges for gas, oil, and dual-fuel burners

Burner	Version	Natural Gas	LPG	Gas Oil
WKmono 80/1	ZM-(R-)NR, R	10:1	9:1	5:1
WKmono 80/1	ZM-(R-)3LN, R-3LN	10:1	7:1	5:1
WKmono 80/1	ZM-4LN	10:1	-	-

Burner	Version	Natural Gas	LPG	Gas Oil
WKmono 80/2	ZM-(R-)NR, R	7:1	5:1	4:1
WKmono 80/2	ZM-(R-)3LN, R-3LN	10:1	8:1	5:1
WKmono 80/2	ZM-4LN	10:1	-	-

Burners equipped with flue gas recirculation (FGR) have a reduced operating capacity. The extent of this reduction in capacity has to be calculated on a case-by-case basis.

*) Dual-fuel burners use a combination of codes (GL, ZM-R).

-weishaupt-

Version

- Load control, oil
- Load control, gas
- Mark
- Capacity
- Size
- Fuel, oil
- Fuel, gas
- Series

Burner selection WKmono-L80, version R

Burner selection WKmono-G(L)80, versions ZM-NR and ZM-R-NR

Please refer to page 7 for notes on the capacity graphs.

WKmo	WKmono-G(L)80/1-A ZM-(R-)NR									
Burner rating kW	Low-p (with f Flow p Nomi 65 Nomir 150	ressure RS reg oressur nal val 80 nal diam 150	e suppl gulator) e into s ve train 100 neter of 150	y (LP1) hutoff n diam 125 f gas bi 150	valve eter 150 utterfly 150	High (with F. p. i Nom 65 Nomi 150	-pressu HP reg nto dou inal va 80 inal diar 150	re supp julator) ible valv Ive trai 100 meter o 150	ve asse n diam 125 f gas bi 150	mbly i eter 150 utterfly 150
Natural 6000 6500 7000 7500 8000 9000 10000 11000 12000 13000	gas E 202 231 263 298 - - - - - - - -	LHV = 117 132 148 166 186 231 283 - -	= 10.3 72 78 86 95 105 128 156 189 226 268	5 kWh/ 57 61 66 72 79 96 116 140 168 200	'Nm ³ ; d 51 53 57 62 67 80 97 117 141 168	= 0.60 100 12 125 140 157 195 239 * 346 * -)6 71 78 8 95 105 129 158 191 230 * 273 *	51 54 58 64 70 84 103 124 150 179	46 48 51 55 60 72 88 106 128 154	44 46 48 52 57 68 82 100 121 145
Natural 6000 6500 7000 7500 8000 9000 10000 11000 12000 13000	gas LL 276 - - - - - - - - - - - - -	LHV 153 177 203 231 261 - - - - -	= 8.83 87 99 113 128 143 178 218 261 -	kWh/1 66 75 84 95 106 131 159 191 226 264	Nm ³ ; d 56 63 71 79 88 109 132 158 186 218	= 0.64 129 149 171 195 220 * 276 * 339 * -	1 100 113 129 145 181 221 • 267 • 316 •	58 66 74 83 93 115 141 169 200 235	50 56 63 71 79 98 119 143 169 198	47 53 60 67 74 92 111 133 158 185
LPG LF 6000 6500 7000 7500 8000 9000 10000 11000 12000 13000	HV = 25 108 119 131 145 159 227 274 - -	5.89 kV 73 79 84 90 97 112 131 157 186 216	Vh/Nm 54 57 59 61 64 69 79 95 111 128	^a ; d = 49 50 51 52 53 56 62 75 87 101	1.555 46 47 48 48 50 54 65 76 87	65 69 73 78 84 95 111 134 159 185	53 55 57 60 62 68 78 94 111 129	44 45 46 47 48 50 55 67 78 91	42 43 43 43 44 45 49 59 70 80	41 42 42 43 43 47 57 67 76

*) So \rightarrow High-pressure regulator for $p_o \leq 350$ mbar.

-weishaupt-

Please refer to page 7 for notes on the capacity graphs and gas supply.

Ξ

Natural gas

LPG

Gas oil

+61 (0)3 9541 8699

Burner selection WKmono-G(L)80, versions ZM-NR and ZM-R-NR

WKmono-G(L)80/2-A ZM-(R-)NR										
Burner rating kW	Low-p (with F Flow p Nomi 65 Nomir 150	ressure RS reg pressur nal val 80 nal dian 150	e suppl gulator) e into s ve trai 100 neter o 150	y (LP1) shutoff n diam 125 f gas b 150	valve eter 150 utterfly 150	High (with F. p. i Nom 65 Nom 150	-pressu HP reg into dou inal va 80 inal diar 150	re supp julator) ible valv Ive trai 100 meter o 150	ly (HP) n diam 125 f gas bi 150	mbly neter 150 utterfly 150
Natural	gas E	LHV	= 10.3	5 kWh	′Nm³; c	d = 0.60)6			
11000 11500 12500 13000 13500 14000 15000 16000 17000			177 187 208 219 230 242 267 293 -	129 134 139 145 151 157 163 176 190 213	106 109 112 115 119 122 126 134 142 158	278* 297* 317* 338* - - - - - - -	180 190 201 212 * 224 * 235 * 248 * 274 * 302 * 339 *	113 117 121 125 130 135 139 149 160 179	95 97 100 102 105 107 110 116 122 136	88 90 92 94 96 98 100 104 108 120
Natural	gas LL	LHV	= 8.83	kWh/I	Nm³; d	= 0.64	1			
11000 11500 12000 13000 13500 14000 15000 16000 17000			250 264 278 293 - - - - - - -	179 187 194 202 210 219 228 246 266 297	146 150 155 159 164 169 174 184 195 217		255 * 270 * 285 * 301 * 317 * 334 * - - -	158 163 169 175 181 187 194 208* 223* 248*	132 135 138 141 144 148 152 159 167 186	122 124 127 129 131 134 136 142 147 163
LPG LH	HV = 28	5.89 kV	Vh/Nm	³ ; d =	1.555					
11000 11500 12000 12500 13000 13500 14000 15000 16000 17000		210 220 231 242 253 265 277 290 -	147 151 156 160 165 170 175 186 197 210	127 130 132 135 137 140 143 149 155 162	118 119 121 123 124 126 128 132 135 140	187 195 204 213* 222* 231* 241* 262* 282* 308*	147 151 156 161 166 171 176 188 199 212 *	119 121 123 125 127 130 132 136 141 147	112 113 114 116 117 118 120 123 126 129	109 110 111 112 113 114 115 118 120 123

*) So \rightarrow High-pressure regulator for $p_o \leq 350$ mbar.

Please refer to page 7 for notes on the capacity graphs and gas supply.

Natural gas LPG Gas oil

WKmon	no-G(L)80/2-A ZM-(R-)I	NR	
Burner rating kW	Low-pressure supply (LP2, (with SKP25 regulator) Flow pressure into shutoff Nominal valve train diam 125 Nominal diameter of gas bi 150	, LP3) valve neter 150 utterfly 150	SKP25 setting pressure F. p. at the flanged bend
Natural g	gas E LHV = 10.35 kWh/l	Nm³; d = 0.606	;
11000 11500 12000 12500 13500 13500 14000 15000 16000 17000	110 113 117 121 125 129 133 141 150 168	98 101 103 106 109 111 114 120 126 141	77 77 78 79 79 80 81 82 83 92
Natural g	gas LL LHV = 8.83 kWh/N	lm ³ ; d = 0.641	
11000 11500 12000 12500 13500 13500 14000 15000 16000 17000	152 157 162 167 172 178 183 195 208 231	135 139 142 145 149 153 156 164 173 192	105 106 107 108 108 109 110 111 123
LPG LH	IV = 25.89 kWh/Nm ³ ; d = 1	.555	
11000 11500 12000 12500 13000 13500 14000 15000 16000 17000	119 121 123 125 127 129 131 135 139 144	115 116 117 119 120 121 123 126 129 133	104 105 106 107 107 108 109 110 111

Order numbers

Oil burners, version R

Burner type	Version	Order No.
WKmono-L80/1-A	R	281 814 10
WKmono-L80/2-A	R	281 824 10
DIN CERTCO: 5G1057	,	

Gas burners, version ZM-NR

Burner type	Version	Gas valve assembly size	Order No.
WKmono-G80/1-A	ZM-NR	DN 65	287 814 14
		DN 80	287 814 15
		DN 100	287 814 16
		DN 125	287 814 17
		DN 150	287 814 18
WKmono-G80/2-A	ZM-NR	DN 65	287 824 14
		DN 80	287 824 15
		DN 100	287 824 16
		DN 125	287 824 17
		DN 150	287 824 18

CE-PIN: CE-0085 CQ 4017

Dual-fuel burners, version ZM-R-NR

Burner type	Version	Gas valve assembly size	Order No.
WKmono-GL80/1-A	ZM-R-NR	DN 65	288 814 14
		DN 80	288 814 15
		DN 100	288 814 16
		DN 125	288 814 17
		DN 150	288 814 18
WKmono-GL80/2-A	ZM-R-NR	DN 65	288 824 14
		DN 80	288 824 15
		DN 100	288 824 16
		DN 125	288 824 17
		DN 150	288 824 18

DIN CERTCO: 5G1056M **CE-PIN:** CE-0085 CQ 4017

-weishaupt-

+61 (0)3 9541 8699

Fuel systems Gas and dual-fuel burners (gas side)

Limits	LP1	LP2	LP3	H	P so			
Gas flow press	sure into shutoff v	alve at max. bur	ner load	≤ 300 ¹⁾ mbar	≤ 300 ¹⁾ mbar	300–500 mbar	300–1 ml	0 000 ²⁾ bar
Regulated gas	pressure p _o			≤ 200 mbar	≤ 250 mbar	≤ 360 mbar	≤ 210 mbar	> 210–350 mbar
Maximum oper	rating pressure (M	IOP) of the gas :	supply	500 mbar	500 mbar	700 mbar	5000 / 10 ml	0000 / 16000 ³⁾ bar
Minimum MOP downstream of	rating for compo f the gas pressure	nents e regulator		500 mbar	500 mbar	700 ⁴⁾ mbar	500 mbar	500 mbar
Nominal valve train size	Gas valve assembly type	WKmono 80/1	WKmono 80/2	Low-pressure supply with FRS regulator	Low-pressure supply with SKP25 regulator on the VGD valve assembly	Low-pressure supply with SKP25 regulator on the VGD valve assembly	High-pressure supply with HP regulator	
DN 100	DMV 5100/12	•	•	•			•	•
DN 125	VGD 40.125	•	•	•	•	4)	•	•
DN 150	VGD 40.150	•	•	•	•	● ⁴⁾	•	•

¹⁾ Exceptions

* Exceptions Normally, valve train layouts LP1 and LP2 are used for gas flow pressures up to a maximum of 300 mbar. This allows for pressure losses between the transfer station and the valve train. Furthermore, it is assumed that the transfer station utilises components (SSV, SRV, regulator) that are not of the highest class of accuracy. In individual cases, following consideration and approval by Weishaupt's headquarters, a gas flow pressure of up to 360 mbar can be approved if the appropriate conditions exist.

²⁾ Dependent on the MOP rating of the high-pressure gas regulator.
 ³⁾ Specific MOP depends on the high-pressure gas regulator type.
 ⁴⁾ Requires the use of a VGD double gas valve assembly, pressure switches and ignition gas valve with an MOP rating ≥ 700 mbar.
 ⁵⁾ WKmonoG(L)80/1-A ZM-(R-)NR burners do not have a pilot line.

Safeguarding of the high-pressure gas supply in the event of a failure The supplier must safeguard the gas flow pressure such that, in the event of failure, it cannot exceed the maximum incidental pressure (MIP*) of the burner's gas valve train.

*MIP = MOP x 1.1

Valve train selection Details

LP1	 Low-pressure gas supply with FRS regulator Used when: The gas flow pressure at maximum burner load is ≤ 300 mba The regulated pressure p_o together with the combustion chamber resistance does not exceed 200 mbar. The MOP ⁵⁾ does not exceed 500 mbar.
LP2	 Low-pressure gas supply with SKP25 regulator For VGD valve assemblies. Used when: The gas flow pressure at maximum burner load is ≤ 300 mba The regulated pressure p_o together with the combustion chamber resistance does not exceed 250 mbar. The MOP ⁵ does not exceed 500 mbar.
LP3	 Low-pressure gas supply with SKP25 regulator For VGD valve assemblies. Used when: The gas flow pressure at maximum burner load is in the ran of 300–500 mbar. The regulated pressure p_o together with the combustion chamber resistance does not exceed 360 mbar. The MOP ⁵⁾ does not exceed 700 mbar.
HP Standard	 High-pressure gas supply, standard version Used when: The gas flow pressure at maximum burner load is > 300 mb The regulated pressure p₀ together with the combustion chamber resistance does not exceed 210 mbar. The MOP ⁵⁾ does not exceed 1000, 2500, 4000, or 5000 mb depending on regulator type. Refer to Print No. 83001202 for component layout.
HP So	 High-pressure gas supply, So version Used when: The gas flow pressure at maximum burner load is > 500 mb The regulated pressure p_o together with the combustion chamber resistance is in the range of 210–350 mbar. The MOP ⁵⁾ does not exceed 4000, 5000, 10000, 16000 mbar, depending on regulator type. Refer to Print No. 83525902 for component layout.

-weishaupt-

Gas-side fuel system

-weishaupt-

Layout of the valve train

On boilers with hinged doors, the gas valve train must be mounted on the opposite side to the boiler door hinges.

Break points in the valve train

Break points in the gas valve train should be provided to enable the door of the heat generator to be swung open. The main gas line is best separated at the compensator.

Support of the valve train

The gas valve train should be properly supported in accordance with site conditions. See the Weishaupt accessories list for various gas valve train support components.

Gas meter

A gas meter must be installed to measure gas consumption during commissioning and servicing.

Compensator

To enable a tension-free mounting of the gas valve train, the fitting of a compensator is strongly recommended.

Optional thermal shutoff (when required by local regulations)

A separate component with $\ensuremath{\mathsf{HTB}}$ seals fitted before the ball valve on flanged gas valve trains.

Scope of delivery

Description	WKmono-L80 version R	WKmono-G80 version ZM-NR	WKmono-GL80 version ZM-R-NR
Burner housing, housing cover, burner motor, air inlet housing, fan wheel, combustion head, ignition unit, ignition cable, ignition electrodes, combustion manager with control unit, flame sensor, actuators, flange gasket, fixing screws	•	•	•
Digital combustion manager W-FM 100 W-FM 200	• 0	• 0	•
Gas valve proving via the combustion manager	-	•	•
Class-A double gas valve assembly	-	•	•
Gas butterfly valve	-	•	•
Air pressure switch	•	•	•
Low gas pressure switch High gas pressure switch	-	•	•
Regulating sleeve in the mixing assembly	•	•	•
Actuators for compound regulation of fuel and air via W-FM: Air damper actuator Gas butterfly valve actuator Oil regulator actuator Mixing assembly actuator	• - •	• • •	•
Max. oil pressure switch in return Min. oil pressure switch in supply	•		•
MDK80 safety shutoff device with solenoid nozzle assembly, solenoid and pre-installed regulating nozzle, 2 oil solenoid shutoff valves, oil regulator	•	-	•
Motor on left-hand side of burner (as viewed from behind burner)	•	•	•
Burner-mounted oil pump	-	-	-
IP 54 protection	•	•	•

Standard
 O Optional

EN 676 stipulates that gas ball valves, gas filters, and gas pressure regulators form part of the burner supply (see Weishaupt accessories list). Please enquire or see the special equipment section of this brochure for further burner executions.

Voltages and frequencies:

Other voltages and frequencies are available on application.

Standard burner motor:

Insulation Class F, IP 55 protection. Premium-efficiency IE3 in accordance with Commission Regulation (EC) No. 640/2009 The necessary motor starter and protection must be fitted in a control panel.

Special equipment WKmono 80, versions R, ZM-NR, and ZM-R-NR

Burner		WKmono-L80 version R	WKmono-G80 version ZM-NR	WKmono-GL80 version ZM-R-NR
W-FM 100 supplied loose		0	0	0
Integral load controller and analogue signal convertor for W-FM 100		0	0	0
W-FM 200 in lieu of W-FM 100, with integral load controller, analogue signal convertor, and VSD module (burner mounted)		0	0	0
W-FM 200 in lieu of W-FM 100, with integral load controller, analogue signal convertor, and VSD module (supplied loose)		0	0	0
W-FM 200 with extended O_2 trim / CO control functionality		0	0	0
110 V control voltage		0	0	0
W-FC 4.0 flame monitoring		0	0	0
W-FC 5.0 flame monitoring		0	0	0
ABE with Chinese-character display, supplied loose		0	0	0
VSD with separate frequency convertor (W-FM200 required) (See accessories list for frequency convertor)		0	0	0
Pt1000 air temperature sensor for combustion efficiency display with	W-FM 200 and O ₂ trim	0	0	0
Solenoid valve for air pressure switch test with continuous-run fan or	post-purge	0	0	0
Low-pressure variant 2 (LP2)		-	0	0
Low-pressure variant 3 (LP3)		-	0	0
0-40 bar pressure gauge with ball valve in supply		0	-	0
0-40 bar pressure gauge with ball valve in return		0	-	0
Separate oil pump station		0	-	0
Motor on right-hand side of burner, air inlet on left-hand side (as viewe	ed from behind burner)	0	0	0
Inverted air inlet (air supply from above)		0	0	0
Air inlet positioned at an angle other than 0° or 180°		Please enquire	Please enquire	Please enquire
Air inlet with LGW air pressure switch for ducted extraneous air supply	/	0	0	0
Combustion head extension	by 150 mm	0	0	0
	by 300 mm	0	0	0

Please enquire regarding further special equipment, or refer to the price list. Country-specific executions and special voltages on application.

Technical data WKmono 80, versions R, ZM-NR, and ZM-R-NR

Fuel-independent			WKmono 80/1-A	WKmono 80/2-A
Burner motor 400 V, 3~, 50 H	Hz	Туре	AF 225M/2L - 24LS 45K0	AF 225M/2L - 24LS 45K0
Motor power output		kW	45	45
Nominal current		А	75	75
Burner without VSD ¹⁾ Motor protection switch or motor prefusing	Star-delta DOL	Type (e.g.) A minimum A minimum	NZMN1-M80 100 A gG (by others) 160 A gG (by others)	NZMN1-M80 100 A gG (by others) 160 A gG (by others)
Burner with VSD ²⁾ Motor protection switch or motor prefusing		Frequency convertor Type (e.g.) A minimum	PK37 NZMN1-M80 125 A gG (by others)	PK37 NZMN1-M80 125 A gG (by others)
Speed (50 Hz)		rpm	2955	2955
Combustion manager Prefusing		Туре А	W-FM 100 16 A B	W-FM 100 16 A B
Air damper actuator Mixing assembly actuator		Туре Туре	SQM48 (20 Nm) SQM48 (20 Nm)	SQM48 (20 Nm) SQM48 (20 Nm)

Oil			WKmono-L80/1-A R	WKmono-L80/2-A R
Ignition unit		Туре	W-ZG02 (2-pole)	W-ZG02 (2-pole)
Flame monitoring		Туре	QRI	QRI
Oil actuator		Туре	SQM48 (20 Nm)	SQM48 (20 Nm)
NO _x Class per EN 2	267	Cat.	2	2
Mass		kg	865	925
Maximum weight m	oment	kNm	10	10
Oil solenoid valves	110–120 V DN 20 (supply) 20 W 110–120 V DN 20 (return) 20 W	Туре Туре	5406 NC 5407 NC	5406 NC 5407 NC
Oil press. switch	0-25 bar (supply - 18 bar) 1-10 bar (return, gas oil - 5 bar)	Туре Туре	DSB 158 DSB 146	DSB 158 DSB 146

Gas		WKmono-G80/1-A ZM-NR	WKmono-G80/2-A ZM-NR
Ignition unit	Туре	W-ZG02 (2-pole)	W-ZG02 (2-pole)
Ignition gas valve Ignition gas valve (LP3)	Туре Туре	-	SV-D 507 VGG10 with SKP15
Flame monitoring	Туре	ION	ION
Gas actuator	Туре	SQM45 (3 Nm)	SQM45 (3 Nm)
NO _x Class per EN 676	Cat.	3	3
Mass (excl. double gas valve assembly and fittings)	kg	835	895
Maximum weight moment	kNm	10	10
Mass of the double gas valve assembly incl. ignition gas valve and connection pieces	DN kg	100 125 150 approx. 61 approx. 51 approx. 70	

Dual-fuel			WKmono-GL80/1-A ZM-R-NR	WKmono-GL80/2-A ZM-R-NR
Ignition unit		Туре	W-ZG03 (3-pole)	W-ZG02 (2-pole)
Ignition gas valve Ignition gas valve (L	P3)	Туре Туре	-	SV-D 507 VGG10 with SKP15
Flame monitoring		Туре	QRI	QRI
Actuator g	jas il	Туре Туре	SQM45 (3 Nm) SQM48 (20 Nm)	SQM45 (3 Nm) SQM48 (20 Nm)
NO _x Class per EN 6	676/EN 267	Cat.	3/2	3/2
Mass (excl. double	gas valve assembly and fittings)	kg	865	925
Maximum weight m	oment	kNm	10	10
Oil solenoid valves	110–120 V DN 20 (supply) 20 W 110–120 V DN 20 (return) 20 W	Туре Туре	5406 NC 5407 NC	5406 NC 5407 NC
Oil press. switch	0–25 bar (supply – 18 bar) 1–10 bar (return, gas oil – 5 bar)	Туре Туре	DSB 158 DSB 146	DSB 158 DSB 146

¹⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Oil-side fuel system

Versions R and ZM-R-NR

-weishaupt-

²⁾ The necessary motor protection can be provided either by a motor protection switch or with motor prefusing (supplied and fitted into a panel by others).

- External pump with pressure maintenance 1
- Strainer 2
- Min. oil pressure switch 3
- Max. oil pressure switch 4
- Supply solenoid valve (fitted in direction of flow) 5
- Return solenoid valve 6
- (fitted against direction of flow) Solenoid nozzle assembly
- Oil regulator 8
- 9 Filter

3LN-version burners: Emissions reduced by the multiflam[®] principle

Primary and secondary flames

Flame image showing efficient combustion

The multiflam^{*} principle developed and patented by Weishaupt is an innovative way of reducing NO_x emissions from combustion plant to a minimal level.

At the heart of Weishaupt's multiflam® technology lies a special mixing assembly design. Fuel is distributed among several nozzles and combusted in a primary and a secondary flame. Temperature in the flame's core is considerably reduced, resulting in an effective reduction of nitrogen oxides.

The wide range of ratings across which multiflam[®] burners are now available is equally outstanding. All the way from the WM 10 monarch[®]-series burner right up to the WK 80 industrial-series burner, there is now a multiflam[®] burner for outputs ranging from 120 up to 23 000 kW. Weishaupt multiflam[®] burners have been proving themselves in the field for 20 years. As fully fledged gas, oil, and dualfuel burners, they are always the first choice for achieving low NO_x emission limit values without resorting to external measures.

However, the achievement of good combustion figures depends on more than just the burner. There are numerous additional parameters, such as the design of the heat generator, and the geometry and the thermal loading of its combustion chamber, that also play an important role. Furthermore, the medium temperature, combustion air temperature, and the air humidity are decisive. When the NO_x emissions for a particular application are guaranteed, the guarantee will always be with reference to certain constraints and system parameters.

The multiflam® mixing assembly of a WKmono 80 burner

-weishaupt-

Burner selection WKmono-L80, version R-3LN

Burner selection WKmono-G(L)80, vers. ZM-3LN and ZM-R-3LN

Please refer to page 7 for notes on the capacity graphs.

WKmono-G(L)80/1-A ZM-(R-)3LN										
Burner rating kW	Low-p (with F Flow p Nomi 65 Nomir 150	ressure RS reg oressur nal val 80 nal dian 150	e suppl gulator) e into s ve train 100 neter of 150	y (LP1) hutoff diam 125 f gas bi 150	valve eter 150 utterfly 150	High- (with F. p. i Nom 65 Nomi 150	pressu HP reg nto dou inal va l 80 nal diar 150	re supp ulator) ble valv lve trai 100 neter o 150	ve asse n diam 125 f gas bi 150	mbly leter 150 utterfly 150
Natural	Natural gas E LHV = 10.35 kWh/Nm ³ : d = 0.606									
6600 7000 8000 9000 10000 11000 12000 13000	271 297 - - - - -	168 183 221 263 - - -	113 120 140 161 183 222 262 -	96 101 114 128 143 173 204 235	87 91 102 113 124 150 177 203	148 160 192 227 * 266 * 322 * -	113 120 140 162 185 225 * 265 * 308 *	88 93 105 117 130 157 186 214 *	82 95 105 115 139 164 189	80 83 92 100 109 133 156 180
Natural	gas LL	LHV	= 8.83	kWh/i	Nm³; d	= 0.64	1			
6600 7000 8000 9000 10000 11000 12000 13000		231 251 - - - - - -	151 160 186 214 245 - -	125 132 149 167 186 226 -	113 118 131 145 159 192 227 -	202 219* 263* 312* 338* - -	151 161 188 217 * 248 * 301 * -	116 122 136 152 168 204 241 * 280 *	107 111 122 134 146 178 210 243*	103 107 117 128 138 168 199 230*
LPG L	HV = 25	5.89 kV	Vh/Nm	³ ; d =	1.555					
6600 7000 8000 9000 10000 11000 12000 13000	146 157 188 223 273 - -	104 110 127 145 177 211 251	82 85 94 103 125 148 176 207	74 77 83 90 108 129 152 179	71 73 78 83 100 119 141 166	94 99 113 129 157 188 224* 263*	80 83 92 102 124 148 176 207	70 72 78 83 101 121 143 169	67 69 74 78 95 113 134 159	66 68 72 77 93 111 131 155

*) So \rightarrow High-pressure regulator for $p_o \leq 350$ mbar.

-weishaupt-

Please refer to page 7 for notes on the capacity graphs and gas supply.

Natural gas LPG Gas oil

Burner selection WKmono-G80, version ZM-3LN

WKmono-G80/2-A ZM-3LN										
Burner rating kW	Low-p (with F Flow p Nomi 65 Nomi 150	ressure RS req oressur nal val 80 nal dia 150	e suppl gulator) e into s ve trai i 100 meter c 150	y (LP1) hutoff n diam 125 of gas t 150	valve leter 150 putterfly 150	High- (with F. p. ii Nom 65 Nomi 150	pressu HP reg nto dou inal va l 80 nal diar 150	re supp ulator) ble valv lve trai 100 neter of 150	ly (HP) e asse n diam 125 f gas bi 150	mbly eter 150 utterfly 150
Natural das E $1 \text{ HV} = 10.35 \text{ kW/b}/\text{N/m}^3$, d = 0.606										
10000 11000 12000 13000 14000 15000 16000 17000	983 L - - - - - - - - -	285	159 178 199 228 260 295 –	118 129 141 160 182 204 228 252	99 106 114 128 145 162 179 197	241 * 278 * 319 * - - - -	160 181 202 233 * 266 * 302 * 339 *	105 113 123 139 158 177 197 218 *	90 95 101 114 128 144 159 175	85 89 93 105 118 132 145 159
Natural	aas LL	LHV	= 8.83	kWh/I	Nm³: d	= 0.641				
10000 11000 12000 13000 14000 15000 16000 17000	- - - - - - - - -		216 244 274 - - - -	158 173 190 217 248 279 -	130 140 151 171 194 217 241 266	338 *	220 249 281 324 - - -	139 152 165 188 214 * 241 * 268 * 297 *	118 126 134 151 172 192 213 * 234 *	110 116 123 138 156 174 193 211 *
LPG LH 10000 11000 12000 13000 14000 15000 16000 17000	HV = 25 264 - - - - - - -	5.89 kV 168 189 212 240 276 - -	Vh/Nm 116 126 137 153 174 199 226 251	³ ; d = 99 106 113 125 142 162 184 203	1.555 91 97 102 112 127 145 164 181	148 166 185 209 240 * 275 * 313 * 350 *	115 126 137 153 175 201 228 * 254 *	92 98 105 115 131 150 170 188	86 91 96 104 119 136 154 170	84 93 101 114 131 148 164

*) So \rightarrow High-pressure regulator for $p_0 \leq 350$ mbar.

Burner capacity is reduced for burners equipped with flue gas recirculation. The extent of the reduction is calculated individually for every application.

Please refer to page 7 for notes on the capacity graphs and gas supply.

WKmor	WKmono-G80/2-A ZM-3LN										
Burner rating kW	Low- (with Flow Nom	pressure supply (LP2 SKP25 regulator) pressure into shutofi inal valve train diar 125 inal diameter of gas t 150	2, LP3) f valve neter 150 putterfly 150	SKP25 setting pressure F. p. at the flanged bend							
Natural gas E LHV = 10.35 kWh/Nm ³ : d = 0.606											
10000 11000 12000 13000 14000 15000 16000 17000		103 110 118 134 151 169 188 207	93 99 105 118 133 148 164 180	75 77 88 99 110 121 131							
Natural	gas LL	LHV = 8.83 kWh/I	Nm ³ ; d = 0.641								
10000 11000 12000 13000 14000 15000 16000 17000	-	135 146 158 179 203 228 254 280	121 129 138 156 176 197 218 240	96 99 102 114 129 143 157 171							
LPG LH	IV = 28	$5.89 \text{ kWh/Nm}^3; \text{ d} =$	1.555								
10000 11000 12000 13000 14000 15000 16000 17000		93 98 104 114 129 148 167 185	89 94 99 107 122 139 157 174	80 83 94 107 122 138 153							

mano			~ 2 10							
Burner rating kW	Low-p (with F Flow p Nomin	RS reg ressure ressure nal val 80	e supply julator) e into s /e trai i 100	hutoff diam	valve eter 150	High- (with F. p. ii Nom i	pressui HP reg nto dou nal val 80	re suppl ulator) ble valv ve train 100	ly (HP) e assei n diam 125	mbly eter 150
	Nomi	inal dia	neter o	of gas b	outterfly	Nomi	nal dian	neter of	i gas bi	utterfly
	150	150	150	150	150	150	150	150	150	150
Natural gas E LHV = 10.35 kWh/Nm ³ ; d = 0.606										
10000 11000 12000 13000 14000 15000 16000	- - - - -	285 - - - - -	159 178 199 228 260 295 -	118 129 141 160 182 204 228	99 106 114 128 145 162 179	241 * 278 * 319 * - - -	160 181 202 233 * 266 * 302 * 339 *	105 113 123 139 158 177 197	90 95 101 114 128 144 159	85 89 93 105 118 132 145
Natural	gas LL	LHV	= 8.83	kWh/I	Nm³; d	= 0.641				
10000 11000 12000 13000 14000	- - - -	- - - -	216 244 274 	158 173 190 217 248	130 140 151 171 194	338 * 	220 249 281 324 -	139 152 165 188 214 *	118 126 134 151 172	110 116 123 138 156
15000 16000	-	_	_	279 _	217 241	-	_	241 * 268 *	192 213 *	174 193
15000 16000 LPG LH	- - -IV = 28	– – 5.89 kV	_ _ /h/Nm	279 – ³ ; d =	217 241 1.555		-	241 * 268 *	192 213*	174 193

*) So \rightarrow High-pressure regulator for $p_o \leq 350$ mbar.

-weishaupt-

Burner capacity is reduced for burners equipped with flue gas recirculation. The extent of the reduction is calculated individually for every application.

Please refer to page 7 for notes on the capacity graphs and gas supply.

-

Natural gas LPG Gas oil

WKmono-GL80/2-A ZM-R-3LN								
Burner rating kW	Low- (with Flow Nom Nomi	pressure supply (LP2 SKP25 regulator) pressure into shutofi inal valve train diar 125 nal diameter of gas t 150	SKP25 setting pressure F. p. at the flanged bend					
Natural g 10000 11000 12000 13000 14000 15000 16000	jas E	LHV = 10.35 kWh/ 103 110 118 134 151 169 188	'Nm ³ ; d = 0.606 93 99 105 118 133 148 164	75 77 79 88 99 110 121				
Natural g 10000 11000 12000 13000 14000 15000 16000	jas LL	LHV = 8.83 kWh/1 135 146 158 179 203 228 254	Nm ³ ; d = 0.641 121 129 138 156 176 197 218	96 99 102 114 129 143 157				
LPG LH 10000 11000 12000 13000 14000 15000 16000	V = 28	5.89 kWh/Nm³; d = 93 98 104 114 129 148 167	1.555 89 94 99 107 122 139 157	80 83 87 94 107 122 138				

Order numbers

Oil burners, version R-3LN (multiflam®)

Brenner- typ	Ausf.	Bestell-Nr.
WKmono-L80/1-A	R-3LN	281 814 20
WKmono-L80/2-A	R-3LN	281 824 20
DIN CERTCO: 5G105	7	

Gas burners, version ZM-3LN (multiflam[®])

Burner type	Version	Gas valve assembly size	Order No.
WKmono-G80/1-A	ZM-3LN	DN 65	287 814 24
		DN 80	287 814 25
		DN 100	287 814 26
		DN 125	287 814 27
		DN 150	287 814 28
WKmono-G80/2-A	ZM-3LN	DN 65	287 824 24
		DN 80	287 824 25
		DN 100	287 824 26
		DN 125	287 824 27
		DN 150	287 824 28

CE-PIN: CE-0085 CQ 4017

Dual-fuel burners, version ZM-R-3LN (multiflam®)

Burner type	Version	Gas valve assembly size	Order No.
WKmono-GL80/1-A	ZM-R-3LN	DN 65	288 814 24
		DN 80	288 814 25
		DN 100	288 814 26
		DN 125	288 814 27
		DN 150	288 814 28
WKmono-GL80/2-A	ZM-R-3LN	DN 65	288 824 24
		DN 80	288 824 25
		DN 100	288 824 26
		DN 125	288 824 27
		DN 150	288 824 28

 DIN CERTCO:
 5G1056M

 CE-PIN:
 CE-0085 CQ 4017

Heat supply at an industrial premises (total steam generation: 37.4 t/h)

-weishaupt-

Scope of delivery

Description	WKmono-L80 version R-3LN	WKmono-G80 version ZM-3LN	WKmono-GL80 version ZM-R-3LN
Burner housing, housing cover, burner motor, air inlet housing, fan wheel, combustion head, ignition unit, ignition cable, ignition electrodes, combustion manager with control unit, flame sensor, actuators, flange gasket, fixing screws	•	•	•
Digital combustion manager W-FM 100 W-FM 200	•	•	•
Gas valve proving via the combustion manager	-	•	•
Class-A double gas valve assembly	-	•	•
Gas butterfly valve	-	•	•
Air pressure switch	•	•	•
Low gas pressure switch High gas pressure switch	-	•	•
Modulating mixing assembly	•	•	•
Actuators for compound regulation of fuel and air via W-FM: Air damper actuator Gas butterfly valve actuator Oil regulator actuator Mixing assembly actuator	• - •		
Max. oil pressure switch in return Min. oil pressure switch in supply	•	-	•
Supply and return with 2 oil solenoid valves, oil regulator, nozzle head, pre-installed nozzles	•	-	•
Motor on left-hand side of burner (as viewed from behind burner)	•	•	•
Burner-mounted oil pump	-	-	-
IP 54 protection	•	•	•

• Standard

O Optional

EN 676 stipulates that gas ball valves, gas filters, and gas pressure regulators form part of the burner supply (see Weishaupt accessories list). Please enquire or see the special equipment section of this brochure for further burner executions.

Voltages and frequencies:

Other voltages and frequencies are available on application.

Standard burner motor:

Insulation Class F, IP 55 protection. Premium-efficiency IE3 in accordance with Commission Regulation (EC) No. 640/2009 The necessary motor starter and protection must be fitted in a control panel.

Special equipment WKmono 80, vers. R-3LN, ZM-3LN, & ZM-R-3LN

Burner		WKmono-L80 version R-3LN	WKmono-G80 version ZM-3LN	WKmono-GL80 version ZM-R-3LN
W-FM 100 supplied loose		0	0	0
Integral load controller and analogue signal convertor for W-FM 100		0	0	0
W-FM 200 in lieu of W-FM 100, with integral load controller, analogue signal convertor, and VSD module (burner mounted)		0	0	0
W-FM 200 in lieu of W-FM 100, with integral load controller, analogue signal convertor, and VSD module (supplied loose)		0	0	0
W-FM200 with extended O ₂ trim/CO control functionality		0	0	0
110 V control voltage		0	0	0
Flue gas recirculation (requires W-FM 200 with extended functionality)		-	0	0
W-FC 4.0 flame monitoring		0	0	0
W-FC 5.0 flame monitoring	0	0	0	
W-FC 6.0 flame monitoring		-	0	0
ABE with Chinese-character display, supplied loose	0	0	0	
VSD with separate frequency convertor (W-FM200 required) (See accessories list for frequency convertor)	0	0	0	
Pt1000 air temperature sensor for combustion efficiency display with V	0	0	0	
Solenoid valve for air pressure switch test with continuous-run fan or po	ost-purge	0	0	0
Low-pressure variant 2 (LP2)		-	0	0
Low-pressure variant 3 (LP3)		-	0	0
0-40 bar pressure gauge with ball valve in supply		0	-	0
0-40 bar pressure gauge with ball valve in return		0	-	0
Separate oil pump station		0	-	0
Motor on right-hand side of burner, air inlet on left-hand side (as viewed	from behind burner)	0	0	0
Inverted air inlet (air supply from above)		0	0	0
Air inlet positioned at an angle other than 0° or 180°		Please enquire	Please enquire	Please enquire
Air inlet with LGW air pressure switch for ducted extraneous air supply		0	0	0
Combustion head extension	by 150 mm	0	0	0
	by 300 mm	0	0	0

Please enquire regarding further special equipment, or refer to the price list. **Country-specific executions and special voltages on application.**

-weishaupt-

+61 (0)3 9541 8699

Technical data WKmono 80, vers. R-3LN, ZM-3LN, & ZM-R-3LN

Fuel-independent			WKmono 80/1-A	WKmono80/2-A
Burner motor 400 V, 3~, 50 H	Hz	Туре	AF 225M/2L - 24LS 45K0	AF 225M/2L - 24LS 45K0
Motor power output		kW	45	45
Nominal current		А	75	75
Burner without VSD ¹⁾ Motor protection switch or motor prefusing	Star-delta DOL	Type (e.g.) A minimum A minimum	NZMN1-M80 100 A gG (by others) 160 A gG (by others)	NZMN1-M80 100 A gG (by others) 160 A gG (by others)
Burner with VSD ²⁾ Motor protection switch or motor prefusing		Frequency convertor Type (e.g.) A minimum	PK37 NZMN1-M80 125 A gG (by others)	PK37 NZMN1-M80 125 A gG (by others)
Speed (50 Hz)		rpm	2955	2955
Combustion manager Prefusing		Туре А	W-FM 100 16 A B	W-FM 100 16 A B
Air damper actuator Mixing assembly actuator		Туре Туре	SQM48 (20 Nm) SQM48 (35 Nm)	SQM48 (20 Nm) SQM48 (35 Nm)

Oil			WKmono-L80/1-A R-3LN	WKmono-L80/2-A R-3LN
Ignition unit		Туре	W-ZG02 (2-pole)	W-ZG02 (2-pole)
Flame monitoring		Туре	QRA 73	QRA 73
Oil actuator		Туре	SQM48 (20 Nm)	SQM48 (20 Nm)
NOx Class per EN 267		Cat.	3	3
Mass		kg	915	925
Maximum weight m	oment	kNm	10	10
Oil solenoid valves	110–120 V DN 20 (supply) 20 W 110–120 V DN 20 (return) 20 W	Туре Туре	5406 NC 5407 NC	5406 NC 5407 NC
Oil press. switch	0–25 bar (supply – 18 bar) 1–10 bar (return, gas oil – 5 bar)	Туре Туре	DSB 158 DSB 146	DSB 158 DSB 146

Gas		WKmono-G80/1-A ZM-3LN	WKmono-G80/2-A ZM-3LN
Ignition unit	Туре	W-ZG02 (2-pole)	W-ZG02 (2-pole)
Ignition gas valve Ignition gas valve (LP3)	Туре Туре	SV-D 507 -	SV-D 507 VGG10 with SKP15
Flame monitoring	Туре	QRA 73	QRA 73
Gas actuator	Туре	SQM45 (3 Nm)	SQM45 (3 Nm)
NOx Class per EN 676	Cat.	3	3
Mass (excl. double gas valve assembly and fittings)	kg	885	895
Maximum weight moment	kNm	10	10
Mass of the double gas valve assembly incl. ignition gas valve and connection pieces	DN kg	100 125 150 approx. 61 approx. 51 approx. 70	

Dual-fuel			WKmono-GL80/1-A ZM-R-3LN	WKmono-GL80/2-A ZM-R-3LN
Ignition unit		Туре	W-ZG02 (2-pole)	W-ZG02 (2-pole)
Ignition gas valve Ignition gas valve		Туре Туре	SV-D 507 -	SV-D 507 VGG10 mit SKP15
Flame monitoring		Туре	QRA 73	QRA 73
Actuator	gas oil	Туре Туре	SQM45 (3 Nm) SQM48 (20 Nm)	SQM45 (3 Nm) SQM48 (20 Nm)
NOx Class per EN	676/EN 267	Cat.	3/3	3/3
Mass (excl. double	gas valve assembly and fittings)	kg	915	925
Maximum weight n	noment	kNm	10	10
Oil solenoid valves	110–120 V DN 20 (supply) 20 W 110–120 V DN 20 (return) 20 W	Туре Туре	5406 NC 5407 NC	5406 NC 5407 NC
Oil press. switch	0–25 bar (supply – 18 bar) 1–10 bar (return, gas oil – 5 bar)	Туре Туре	DSB 158 DSB 146	DSB 158 DSB 146

¹⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Oil-side fuel system

Versions R-3LN and ZM-R-3LN

-weishaupt-

²⁾ The necessary motor protection can be provided either by a motor protection switch or with motor prefusing (supplied and fitted into a panel by others).

- External pump with pressure maintenance 1
- 2 Strainer
- Min. oil pressure switch 3
- Max. oil pressure switch 4
- 5 Supply solenoid valve
- (fitted in direction of flow)
- 6 Return solenoid valve (fitted against direction of flow)
- 7a Hydraulic nozzle head with secondary nozzles
- 7b Nozzle assembly with primary nozzle
- 8
- Oil regulator 100 µm filter (accessory) 9

Very high capacity, very low emissions: The 4LN-version WKmono 80

WKmono-G80 with flue gas recirculation

FGR connecting bend with actuator and Pt100

Gas-firing multiflam® mixing assembly

Flexibility with flue gas recirculation Where stringent emission limits for oxides of nitrogen are in force, Weishaupt's various mixing assemblies for gas-fired burners can be combined with flue gas recirculation. Weishaupt takes advantage of the special properties

of the flame geometry, and with it the adaption to the combustion chamber, to reduce NO_x levels.

General arrangement of a flue gas recirculation system with a WKmono-series burner

The multiflam[®] principle developed and patented by Weishaupt is a way to reduce nitrogen oxide emissions to a minimum.

At the heart of Weishaupt's multiflam® technology is a special mixing assembly design. Distribution of the fuel between the primary and secondary flames, with additional flame recirculation directly at the mixing assembly, reduces oxides of nitrogen to a minimum.

If a specific market demands ultra-low

NO_x emissions, Weishaupt combines multiflam[®] technology with external flue gas recirculation. This system, which is designed for gaseous fuels, reduces NO_x emissions to levels that will meet the most stringent of standards worldwide.

The compact FGR dosing unit is worth highlighting. The connecting bend incorporates the FGR butterfly valve and the associated temperature sensor. This packaged assembly allows the system to be fully tested at the factory and avoids additional installation work on site.

-weishaupt-

The FGR system is controlled by the W-FM200 combustion manager. An additional software module ensures the return of a temperature-compensated volume of flue gas at all operating stages, reliable cold start behaviour, and the very highest degree of operational availability.

Burner selection WKmono-G80, version ZM-4LN

Burner capacity is reduced for burners equipped with flue gas recirculation. The extent of the reduction is calculated individually for every application.

Please refer to page 7 for notes on the capacity graphs and gas supply.

[mbar]	Burner type Combustion head Capacity range	WKmono-G80/2-A ZM-4LN WKG80/1-A-4LN Natural gas 1600–16 000 kW
36 —		
32		
28		
24		
20		
16		
12		
8		
4		
-4 — 1 [kW]	0 2000 4000 60	00 8000 10000 12000 14000 16000 18000

WKmono-G80/2-A ZM-4LN

Burner rating kW	Low-p (with f Flow p	ressure RS rec pressure	e suppl gulator) e into s	y (LP1) hutoff) valve	High (with F. p. i	pressu HP reg nto dou	re supp julator) ible valv	oly (HP) ve asse	mbly
	Nomi 65	nal val 80	ve traii 100	n diam 125	eter 150	Nom	inal va	Ive trai	n diam 125	150
	Nom	inal dia	meter o	of gas b	outterfly	Nomi	inal dia	meter o	f gas b	utterfly
	150	150	150	Ĭ50	150	150	150	150	Ĭ50	150
Natural	Natural gas E LHV = 10.35 kWh/Nm ³ ; d = 0.606									
8500	-	235	144	115	101	-	144	104	93	90
9000	-	-254	151	119	103	-	152	107	95	91
10000	-	-294	168	127	108	-	169	114	99	94
10000	-	-	186	137	114	-	188	121	103	100
12000	-	-	205	147	107	-	_	129	110	100
14000	_	_	-252	173	136	_	_	149	120	110
15000	_	_	-283	192	150	_	_	165	132	120
16000	-	-	-	216	168	-	-	186	147	134
Natural	gas LL	LHV	= 8.83	kWh/l	Nm³; d	= 0.64	1			
8500	-	-	207	165	145	-	-	151	135	130
9000	-	-	218	171	148	-	-	155	138	131
10000	-	-	241	183	155	-	-	164	143	135
11000	-	-	267	196	163	-	-	175	148	139
12000	-	-	295	211	171	-	-	186	154	143
13000	-	-	-	227	180	-	-	197	101	148
15000	-	-	-	247	010	-	-	-	106	100
16000	-	-	-	2/3	236	_	-	-	- 180	188

*) So \rightarrow High-pressure regulator for $p_o \leq 350$ mbar.

WKmo	no-G8	80/1-A	AZM-	4LN						
Burner rating kW	Low-p (with f Flow p Nomi 65 Nomir 150	ressure RS reg pressur nal val 80 nal dian 150	e suppl gulator) e into s ve train 100 neter of 150	y (LP1) hutoff n diam 125 f gas bu 150	valve eter 150 utterfly 150	High- (with F. p. ii Nom i 65 Nomi 150	pressu HP reg nto dou inal val 80 nal diar 150	re supp ulator) ble valv ve trai 100 neter o 150	ly (HP) n diam 125 f gas bu 150	mbly eter 150 utterfly 150
Natural	gas E	LHV :	= 10.3	5 kWh/	′Nm³; d	= 0.60	6			
6600 7000 7500 8000 9000 10000 11000 12000 13000	290 	188 200 216 232 268 - - -	133 138 144 151 165 184 210 242 281	115 118 122 126 133 144 161 184 213	107 109 111 113 118 125 139 157 181	167 177 190 203 232 * 267 * 311 * -	132 137 144 151 166 186 213 * 246 * 268 *	108 110 113 116 121 131 146 166 192	101 103 105 106 109 116 128 145 167	99 100 102 103 105 111 121 137 158
Natural	gas LL	LHV	= 8.83	kWh/I	Nm³; d	= 0.641				
6600 7000 7500 8000 9000 10000 11000 12000 13000		274 - - - - - - -	194 201 210 220 239 264 - -	168 172 177 182 191 206 229 -	156 159 162 165 169 178 195 220	245 * 259 * 277 * 296 * 336 * - - -	194 201 211 * 221 * 241 * 268 * 304 * 	159 162 166 170 176 187 207 234 * 270 *	149 151 153 156 158 166 181 203 233 *	146 147 149 151 152 158 171 192 220

*) So \rightarrow High-pressure regulator for $p_o \leq 350$ mbar.

-weishaupt-

Burner capacity is reduced for burners equipped with flue gas recirculation. The extent of the reduction is calculated individually for every application.

Please refer to page 7 for notes on the capacity graphs and gas supply.

WKmono-G80/2-A ZM-4LN								
Burner rating kW	Low- (with Flow Nom	pressure supply (LP2 SKP25 regulator) pressure into shutoff inal valve train dian 125 nal diameter of gas b 150	2, LP3) valve neter 150 putterfly 150	SKP25 setting pressure F. p. at the flanged bend				
Natural g	as E	LHV = 10.35 kWh/	′Nm³; d = 0.606	i				
8500 9000 11000 12000 13000 14000 15000 16000		103 106 112 118 125 132 143 157 176	97 98 102 107 111 116 124 136 152	83 83 84 85 86 87 91 98 109				
Natural g	as LL	LHV = 8.83 kWh/M	Nm ³ ; d = 0.641					
8500 9000 10000 12000 13000 14000 15000 16000		149 152 160 169 178 203 223 248	139 141 146 152 159 165 176 192 213	120 120 121 122 123 124 128 137 152				

Order numbers

Gas burners, version ZM-4LN

Burner type	Version	Gas valve assembly size	Order No.
WKmono-G80/1-A	ZM-4LN	DN 65	287 814 44
		DN 80	287 814 45
		DN 100	287 814 46
		DN 125	287 814 47
		DN 150	287 814 48
WKmono-G80/2-A	ZM-4LN	DN 65	287 824 44
		DN 80	287 824 45
		DN 100	287 824 46
		DN 125	287 824 47
		DN 150	287 824 48

CE-PIN: CE-0085 CQ 4017

Scope of delivery

Description

Burner housing, housing cover, burner motor, air inlet housing, fan wheel, combustion head, ignition unit, ignition cable, ignition electrodes, combustion manager with control unit, flame sensor, actuators, flange gasket, FGR connection with actuator, fixing screws

Digital combustion manager W-FM 200

Gas valve proving via the combustion manager

Class-A double gas valve assembly

Gas butterfly valve

Air pressure switch

Low gas pressure switch High gas pressure switch

Modulating mixing assembly

Actuators for compound regulation of fuel and air via W-FM: Air damper actuator Gas butterfly valve actuator Mixing assembly actuator

Motor on left-hand side of burner (as viewed from behind burner)

IP 54 protection

 Standard O Optional

EN 676 stipulates that gas ball valves, gas filters, and gas pressure regulators form part of the burner supply (see Weishaupt accessories list). Please enquire or see the special equipment section of this brochure for further burner executions.

Voltages and frequencies:

Other voltages and frequencies are available on application.

Standard burner motor:

Insulation Class F, IP 55 protection. Premium-efficiency IE3 in accordance with Commission Regulation (EC) No. 640/2009 The necessary motor starter and protection must be fitted in a control panel.

-weishaupt-

WKmono-G80 version ZM-4LN
•
•
 •
•
•
•
•
•
•
•

Special equipment WKmono-G80, version ZM-4LN

Burner		WKmono-G80 version ZM-4LN
W-FM200 supplied loose	0	
ABE with Chinese-character display, supplied loose	0	
VSD with separate frequency convertor (W-FM 200 required) (See accessories list for frequency convertor)	0	
Pt1000 air temperature sensor for combustion efficiency display with W-	0	
Solenoid valve for air pressure switch test with continuous-run fan or pos	0	
Combustion head extension	by 50 mm	0
Air inlet with LGW air pressure switch for ducted extraneous air supply	0	
Low-pressure variant 2 (LP2)		0
Low-pressure variant 3 (LP3)		0
Motor on right-hand side of burner, air inlet on left-hand side (as viewed t	0	
Inverted air inlet (air supply from above)		0
Air inlet positioned at an angle other than 0° or 180°		Please enquire
110 V control voltage		0

Please enquire regarding further special equipment, or refer to the price list. Country-specific executions and special voltages on application.

Technical data WKmono-G80, version ZM-4LN

Fuel-independent			WKmono 80/1-4	WKmono 80/2-4
Burner motor 400 V 3~ 50	0 Hz	Туре	AF 225M/2L - 24LS 45K0	AF 225M/2L - 24LS 45K0
Mater power output	0112	1300	45	45
Neminal surrant		A .	75	40
		A	75	75
Burner without VSD 1) Motor protection switch or motor prefusing	Star-delta DOL	Type (e.g.) A minimum A minimum	NZMN1-M80 100 A gG (by others) 160 A gG (by others)	NZMN1-M80 100 A gG (by others) 160 A gG (by others)
Burner with VSD 2) Motor protection switch or motor prefusing		Frequency convertor Type (e.g.) A minimum	PK37 NZMN1-M80 125 A gG (by others)	PK37 NZMN1-M80 125 A gG (by others)
Speed (50 Hz)		rpm	2955	2955
Combustion manager Prefusing		Туре А	W-FM 200 16 A B	W-FM 200 16 A B
Air damper actuator Mixing assembly actuator FGR actuator		Туре Туре Туре	SQM48 (20 Nm) SQM48 (35 Nm) SQM48 (20 Nm)	SQM48 (20 Nm) SQM48 (35 Nm) SQM48 (20 Nm)
Gas			WKmono-G80/1-A ZM-4LN	WKmono-G80/2-A ZM-4LN
Ignition unit		Туре	W-ZG02 (2-pole)	W-ZG02 (2-pole)
Ignition gas valve Ignition gas valve (LP3)		Туре Тур	SV-D 507 -	SV-D 507 VGG10 with SKP15
Flame monitoring		Туре	ION	ION
Gas actuator		Туре	SQM45 (3 Nm)	SQM45 (3 Nm)
NOx Class per EN 676		Cat.	3	3
Mass (excl. double gas valv	e assembly and fittings)	kg	885	895
Maximum weight moment		kNm	10	10

100

125

150

DN kg Mass of the double gas valve assembly incl. ignition gas valve and connection pieces approx. 61 approx. 51 approx. 70

¹⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

-weishaupt-

 $^{\mbox{\tiny (2)}}$ The necessary motor protection can be provided either by a motor protection switch or with motor prefusing (supplied and fitted into a panel by others).

+61 (0)3 9541 8699

Dimensions

Standard housing configuration

Burner	Dimensions in mm												
type	l ₁	1 ₂	l ₃	I_4	1 ₅	1 ₆	b ₁	b ₂	b3	h ₁	h_2	h ₃	h ₄
WKmono-L80/1-A R	1635	615	425	900	368	≥ 0	1732	925	543	1661	515	1236	456
WKmono-L80/2-A R	1635	615	500	900	368	≥ 0	1732	925	543	1661	515	1236	456
WKmono-G80/1-A ZM-NR	1635	615	425	900	368	≥ 0	1732	925	543	1661	515	1236	456
WKmono-G80/2-A ZM-NR	1635	615	500	900	368	≥ 0	1732	925	543	1661	515	1236	456
WKmono-GL80/1-A ZM-R-NR	1635	615	425	900	368	≥ 0	1732	925	543	1661	515	1236	456
WKmono-GL80/2-A ZM-R-NR	1635	615	500	900	368	≥ 0	1732	925	543	1661	515	1236	456
WKmono-L80/1-A R-3LN	1635	615	444	900	368	≥ 50	1732	925	543	1661	515	1236	456
WKmono-L80/2-A R-3LN	1635	615	510	900	368	≥ 70	1732	925	543	1661	515	1236	456
WKmono-G80/1-A ZM-3LN	1635	615	444	900	368	≥ 50	1732	925	543	1661	515	1236	456
WKmono-G80/2-A ZM-3LN	1635	615	510	900	368	≥ 70	1732	925	543	1661	515	1236	456
WKmono-GL80/1-A ZM-R-3LN	1635	615	444	900	368	≥ 50	1732	925	543	1661	515	1236	456
WKmono-GL80/2-A ZM-R-3LN	1635	615	510	900	368	≥ 70	1732	925	543	1661	515	1236	456

All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.

Mounting-plate drilling dimensions

Burner type	Dimens h ₅	sions in n h ₆	nm d ₁	d ₂	d ₃	d ₄	d ₅	Nominal diameter of gas butterfly
WKmono-L80/1-A R	850	200	485	M16	530	770	875	-
WKmono-L80/2-A R	850	200	590	M16	640	770	875	-
WKmono-G80/1-A ZM-NR	850	200	485	M16	530	770	875	DN 150
WKmono-G80/2-A ZM-NR	850	200	590	M16	640	770	875	DN 150
WKmono-GL80/1-A ZM-R-NR	850	200	485	M16	530	770	875	DN 150
WKmono-GL80/2-A ZM-R-NR	850	200	590	M16	640	770	875	DN 150
WKmono-L80/1-A R-3LN	850	200	480	M16	640	770	875	-
WKmono-L80/2-A R-3LN	850	200	540	M16	640	770	875	-
WKmono-G80/1-A ZM-3LN	850	200	480	M16	640	770	875	DN 150
WKmono-G80/2-A ZM-3LN	850	200	540	M16	640	770	875	DN 150
WKmono-GL80/1-A ZM-R-3LN	850	200	480	M16	640	770	875	DN150
WKmono-GL80/2-A ZM-R-3LN	850	200	540	M16	640	770	875	DN150

All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.

-weishaupt-

Heat generator preparation

Dimensions

Air inlet with intermediate flange Inverted air inlet

with FGR connecting bend

b,

2085 1160 1023

WKmono 80/2 air inlet with FGR connecting bend

WKmono 80/2	Dimensions in mm				
burner	b ₁ b ₄				
with intermediate flange	1892	967			

Air inlet with intermediate flange & FGR connecting bend Inverted air inlet

All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.

Minimum clearances with multiple burners Without intermediate flange

WKmono 80/2	Dimer	Dimensions in mm						
burner	b ₅	b ₅ b _{6 (min)} b ₇						
without intermediate flange	807	1650	25* / 250**	35				

*) **) Minimum clearance for air cooling of the burner motor

Servicing dimension (please enquire regarding smaller clearances)

All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.

-weishaupt-

Contact Us

Maximising Energy Efficiencies for a Sustainable Future

admin@egl.com.au

www.environmental.com.au

03 9541 8699

COffice Locations

Melbourne

Tomlinson Energy Services Suite 2.01 | Level 2 315 Ferntree Gully Road Mount Waverley VIC 3149 P: 03 8560 0416 E: energyservice.melbourne@tomlinsonenergy.com.au

Sydney

Tomlinson Energy Services A2, 26 Power Road Seven Hills NSW 2417 P: 02 9681 4177 E: energyservice.sydney@tomlinsonenergy.com.au

Brisbane

Tomlinson Energy Services 1/48 Commerce Circuit Yatala QLD 4207 P: 07 3462 0159 E: energyservice.brisbane@tomlinsonenergy.com.au

South Australia

Tomlinson Energy Services 26 Phillips Street Thebarton SA 5031 P: 08 8297 9688 E: energyservice.adelaide@tomlinsonenergy.com.au

Western Australia

Tomlinson Energy Services 40 Sorbonne Crescent Canning Vale WA 6155 P: 08 9455 5511 E: energyservice.perth@tomlinsonenergy.com.au

The Environmental Group Limited Engineering a Sustainable Future